Surgical Approach, Risks, and Outcomes Of Paraesophageal Hiatal Hernia Repair: An Analysis Of The National Inpatient Sample Database

Surgical Section of the National Medical Association

July 26, 2011

Terrence M. Fullum, MD, FACS
Associate Professor of Surgery
Chief, Division of Minimally Invasive and Bariatric Surgery
Howard University College of Medicine

Tolulope A. Oyetunji¹, Olusola Obayomi-Davies¹, Ashley E. Riley¹, Stephanie R. Downing¹, David C. Chang¹, Richard Alexander¹, Edward E. Cornwell¹, Patricia L. Turner²

Departments of Surgery, Howard University College of Medicine¹, and University of Maryland School of Medicine²
Disclosures

- Consultant
 - Ethicon Endosurgery, Inc.
 - WL Gore, Inc.
- National Faculty
 - Ethicon Endosurgery, Inc.
Epidemiology and Anatomy

- **Incidence of hiatal hernias: 5 per 1000**
 - 95% are small type I
 - 2-5% are incarcerated paraesophageal hernias
 - At least 1/3 of stomach herniated into the thorax
 - Elderly
Symptoms

- **Type 1 Sliding hiatal hernia**
 - Asymptomatic
 - Reflux

- **Paraesophageal hiatal hernia (PHH:types 2-4)**
 - Asymptomatic
 - Obstruction
 - Diaphragmatic impingement on the stomach
 - Gastric volvulus
 - Compression of the esophagus by the intrathoracic stomach
 - Bleeding (33%)
 - Hematemesis or bleeding caused by ulceration of the stomach
 - Respiratory complications
 - Associated with a large paraesophageal hernia
 - Recurrent aspiration, pneumonia, and chronic cough
Diagnosis
Treatment of PHH

- **Surgical Repair**
 - Reduction of incarcerated organs
 - Reduction +/- excision of the hernia sac
 - Repair of the diaphragmatic defect
- **Laparoscopic approach**
 - Successful in 90% of cases
 - Decreased postop pain, shortened recovery time
 - Decreased morbidity
 - Transabdominal preferred over transthoracic
 - More precise reduction of the volvulus
 - More accurate reconstruction of the hiatus
- **Areas of non-consensus**
 - Watchful waiting vs urgent repair of asymptomatic PHH
 - Routine anti-reflux operation
 - Esophageal lengthening procedure
 - Routine use of prosthetic mesh with the repair of the diaphragmatic defect

- Cloyd, DW. Surg Endosc, 1994
Watchful Waiting if Asymptomatic

- Emergency intervention for symptoms
- Most patients have symptoms if properly interviewed
 - Minimal symptoms are associated with complications
 - Uncomplicated repair: 1-2% mortality
 - Benefits of the laparoscopic approach
- 45% of asymptomatic patients will progress if left untreated
- Major complications include torsion, gangrene, perforation, and massive hemorrhage
 - Surgical death rate: 16-50%
 - Gastric volvulus death rates approach 100%
 - Most patients are elderly and will not tolerate a complicated course

Questions for Outcomes Research

- What are the definitive risk factors that can predict poor outcomes in PHH repair?
- To what extent do these risk factors influence outcomes in PHH repair?
Hypothesis

- Laparoscopic PHH repair affords better outcomes than open abdominal or thoracic repair.
- Uncomplicated cases afford better outcomes than complicated cases regardless of approach.
 - “Watchful waiting” increases mortality.
Methods

- 9-year (1998-2006) retrospective analysis of the Nationwide Inpatient Sample (NIS) database
 - approximately 7 million records per year
- ICD-9 diagnoses and Procedure codes
 - Complicated (incarcerated, obstructed, strangulated) vs uncomplicated PHH repair
 - Complicated is our surrogate for watchful waiting
 - Laparoscopic, open abdominal, or open thoracic approach
- Outcome variables were in-hospital mortality and length of stay (LOS)
- Univariate, Bivariate and Multivariate analyses
 - Controlling for demographics (age, gender, ethnicity) and co-morbidities (obesity, Charlson Co-morbidity Index) while looking for independent risk factors for mortality in PHH repair.
Results: Univariate Analysis

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Patients</td>
<td>23,514</td>
<td></td>
</tr>
<tr>
<td>In Hospital Mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>15,119</td>
<td>64</td>
</tr>
<tr>
<td>Uncomplicated</td>
<td>19,921</td>
<td>84.72</td>
</tr>
<tr>
<td>Complicated</td>
<td>3,593</td>
<td>15.28</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obese</td>
<td>3,891</td>
<td>16.55</td>
</tr>
</tbody>
</table>
Results: Univariate Analysis

PHH Repair By Surgical Approach

- Open Abdominal: 56%
- Lap: 35%
- Open Thoracic: 9%
Bivariate Analysis (p≤0.05)

- Mean Age 56.1 years

Bivariate Analysis: Mean Age by Approach and Hernia Status

- **Surgical Approach**:
 - Lap
 - Open Abdominal
 - Open Thoracic

- **Hernia Status**:
 - Uncomplicated
 - Complicated
Bivariate Analysis (p≤0.05)

Bivariate Analysis: Overall Mortality By Approach and Hernia Status,

<table>
<thead>
<tr>
<th>Approach</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lap</td>
<td>0.74%</td>
</tr>
<tr>
<td>Open Abdominal</td>
<td>2.27%</td>
</tr>
<tr>
<td>Open Thoracic</td>
<td>1.67%</td>
</tr>
<tr>
<td>Uncomplicated</td>
<td>1.02%</td>
</tr>
<tr>
<td>Complicated</td>
<td>5.26%</td>
</tr>
</tbody>
</table>
Bivariate Analysis (p≤0.05)

Bivariate Analysis: Mortality By Approach and Hernia Status

Mortality

- Lap: 3.79% (Uncomplicated: 0.57%, Complicated: 3.22%)
- Open Abdominal: 5.75% (Uncomplicated: 1.34%, Complicated: 4.41%)
- Open Thoracic: 3.60% (Uncomplicated: 1.22%, Complicated: 2.38%)
Length of Stay (p≤0.05)

Bivariate Analysis: LOS By Surgical Approach for PHHR, p=0.000

Length of Stay (Days)

- Lap: 3.81
- Open Abdominal: 6.91
- Open Thoracic: 8.75

Surgical Approach
Bivariate Analysis (p≤0.05)

Bivariate Analysis: LOS by Approach and Hernia Status

![Graph showing LOS in days for different approaches and hernia status]
Multivariate Analysis: Likelihood of Death

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ODDS RATIO</th>
<th>p-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laparoscopic</td>
<td>0.53</td>
<td>0.000</td>
<td>0.38-0.74</td>
</tr>
<tr>
<td>Open Thoracic</td>
<td>1.04</td>
<td>0.864</td>
<td>0.69-1.57</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>2.03</td>
<td>0.009</td>
<td>1.19-3.47</td>
</tr>
<tr>
<td>Hispanic</td>
<td>2.34</td>
<td>0.001</td>
<td>1.42-3.83</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>=60 - <70</td>
<td>3.25</td>
<td>0.011</td>
<td>1.31-8.03</td>
</tr>
<tr>
<td>>=70 - <80</td>
<td>6.48</td>
<td>0.000</td>
<td>2.72-15.4</td>
</tr>
<tr>
<td>>=80 - <90</td>
<td>18.06</td>
<td>0.000</td>
<td>7.61-42.84</td>
</tr>
<tr>
<td>>90</td>
<td>34.25</td>
<td>0.000</td>
<td>13.65-85.89</td>
</tr>
<tr>
<td>Hernia Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complicated</td>
<td>2.01</td>
<td>0.000</td>
<td>1.51-2.67</td>
</tr>
</tbody>
</table>
Multivariate Analysis: Likelihood Of Death For PHH Repair (PHHR),
1.0=Comparison group

Approach Ethnicity Age Hernia Status
Lap Open Abdominal Open Thoracic White African American Hispanic 0-40 60-70 70-80 80-90 >90 Uncomplicated Complicated
0.53 1.00 1.04 1.00 2.03 2.34 1.00 3.25 6.48 18.06 34.25 1.00 2.01

Odds Ratio
Multivariate Analysis: Likelihood of Death

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ODDS RATIO</th>
<th>p-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.10</td>
<td>0.454</td>
<td>0.85-1.40</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obese</td>
<td>0.51</td>
<td>0.077</td>
<td>0.24-1.07</td>
</tr>
</tbody>
</table>
Results: Summary

- Independent risk factors for mortality
 - Surgical Approach
 - Open abdominal and open thoracic
 - Age > 60 years
 - Complicated Hernia Status
 - Ethnicity
 - African American or Hispanic
Study Limitations

- In-Hospital Mortality Assessment
 - Readmissions are not captured in data
- Retrospective Study
- Uncomplicated with symptoms not captured
- Assume that if you’re complicated you have symptoms
 - Surrogate for watchful waiting
Conclusions

- Surgical approach, age, complicated hernia status and ethnicity are independent risk factors for mortality in patients undergoing PHH repair.
- Waiting until the patient develops symptoms (which may be associated with complications) may predispose patients already at high risk (age) to unnecessary mortality.
Conclusion

- Laparoscopic approach in the uncomplicated group affords a 0.57% mortality regardless of age.
- Watchful waiting increases mortality at least two-fold once complications/symptoms occur.
Thank you